Simple Marginally Noninformative Prior Distributions for Covariance Matrices
نویسندگان
چکیده
منابع مشابه
Information Covariance Matrices for Multivariate Burr III and Logistic Distributions
Main result of this paper is to derive the exact analytical expressions of information and covariance matrices for multivariate Burr III and logistic distributions. These distributions arise as tractable parametric models in price and income distributions, reliability, economics, Human population, some biological organisms to model agricultural population data and survival data. We showed that ...
متن کاملWeakly Informative Prior for Covariance Matrices 1 Running head: WEAKLY INFORMATIVE PRIOR FOR COVARIANCE MATRICES Weakly Informative Prior for Point Estimation of Covariance Matrices in Hierarchical Models
When fitting hierarchical regression models, maximum likelihood estimation has computational (and, for some users, philosophical) advantages compared with full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (Σ) of group-level varying coefficients are often degenerate. One can do better, even from a purely point-estimation perspective, by using a p...
متن کاملInformation and Covariance Matrices for Multivariate Pareto (IV), Burr, and Related Distributions
Main result of this paper is to derive the exact analytical expressions of information and covariance matrix for multivariate Pareto, Burr and related distributions. These distributions arise as tractable parametric models in reliability, actuarial science, economics, finance and telecommunications. We showed that all the calculations can be obtained from one main moment multidimensional integr...
متن کاملVisualizing Distributions of Covariance Matrices
We present some methods for graphing distributions of covariance matrices and demonstrate them on several models, including the Wishart, inverse-Wishart, and scaled inverse-Wishart families in different dimensions. Our visualizations follow the principle of decomposing a covariance matrix into scale parameters and correlations, pulling out marginal summaries where possible and using two and thr...
متن کاملComputing Posterior Distributions for Covariance Matrices
Diiculties in computing the posterior distribution of a covariance matrix when using nonconjugate priors has been discussed by several authors. Typically, the posterior distribution for the covariance matrix is computed via the Gibbs sampler and when using a Wishart prior for the inverse of the covariance matrix, one obtains conditional conjugacy (the full conditional distribution of the invers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2013
ISSN: 1936-0975
DOI: 10.1214/13-ba815